Loss characteristics of superconducting pancake, solenoid and spiral coils for wireless power transfer

Author:

Machura PhilipORCID,Zhang HongyeORCID,Kails KevinORCID,Li QuanORCID

Abstract

Abstract Wireless power transfer (WPT) is an emerging technology with widespread applications, such as wireless charging for electric vehicles (EVs), which has become a major point of interest. Conventionally, it is used for stationary charging, but also dynamic systems emerge. Key drawbacks of standard WPT systems are the limited transfer distance between the copper coils and the transfer efficiency. By employing high-temperature superconductors (HTS) as coil material these limitations can be alleviated. However, HTS coils have highly nonlinear ac loss characteristics, which will be studied. This paper investigates the transport current loss and the magnetisation loss of HTS coils individually and when combined in the high frequency range relevant to WPT for EVs. A multilayer 2D axisymmetric coil model based on H -formulation is proposed and validated by experimental results as the HTS film layer is inapplicable at such frequencies. Three of the most commonly employed coil configurations, namely: double pancake, solenoid and circular spiral are examined. While spiral coils experience the highest transport current loss, solenoid coils are subject to the highest magnetisation loss due to the overall distribution of the turns. Furthermore, a transition frequency is defined for each coil when losses in the copper layer exceed the HTS losses. It is much lower for coils due to the interactions between the different turns compared to single HTS tapes. At higher frequencies, the range of magnetic field densities, causing a shift where the highest losses occur, decreases until losses in the copper stabilisers always dominate. In addition, case studies investigating the suitability of HTS-WPT are proposed.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3