Abstract
Abstract
The lap-type twin-box joints are integral components in International Thermonuclear Experimental Reactor (ITER) fusion magnets, with profound implications for magnet stability based on their electro-magnetic, thermal, and mechanical properties. Throughout the extensive R&D process, rigorous qualification tests are conducted to meet stringent standards. However, existing tests often prioritize global performance, which lack of strand-level details due to inherent limitations in test setups. Furthermore, as the referencing test facility of SULTAN falls short in replicating relevant ITER operating conditions, numerical methods that offer both accuracy and the requisite level of detail for comprehensive magnet and component analysis and development are necessary. This paper introduces the utilization of the JackPot-AC/DC code, developed at the University of Twente, as a fundamental tool for achieving strand-level precision in handling CICCs and joints, which encompasses copper and solder components. The primary focus of this study is to obtain precise input parameters, emphasizing their role in conducting a quantitative analysis using JackPot-AC/DC. The investigation centers on an ITER PF5 joint (PFJEU6), where contact resistances and AC losses were measured under parallel magnetic fields. Given the constraints in the measured results, an enhanced parameterization is performed to derive precise resistivity and solder-related parameters. Additionally, sensitivity analyses of individual parameters and cable compact configurations are thoughtfully evaluated. With the optimal input parameters acquired, systematic simulations of the joint exposed to transverse magnetic fields, mimicking SULTAN and ITER operating conditions, are processed and validated against experimental results. This research establishes a comprehensive foundation for the analysis of lap-type twin-box joints, including DC, AC, and stability properties. The outcomes will significantly contribute to advancing the understanding of the intricate behavior of these joints in the context of fusion magnet applications.
Funder
ITER International Organization