Abstract
Abstract
We demonstrate superconducting single-photon detectors (SPDs) that integrate signals locally at each pixel. This capability is realized by the monolithic integration of superconducting-nanowire SPDs with Josephson electronics. The motivation is to realize superconducting sensor elements with integrating capabilities similar to their CMOS-sensor counterparts. The pixels can operate in several modes. First, we demonstrate that photons can be counted individually, with each detection event adding an identical amount of supercurrent to an integrating element. Second, we demonstrate an active gain control option, in which the signal added per detection event can be dynamically adjusted to account for variable light conditions. Additionally, the pixels can either retain signal indefinitely to record all counts incurred over an integration period, or the pixels can record a fading signal of detection events within a decay time constant. We describe additional semiconductor readout circuitry that will be used in future work to realize scalable, large-format sensor arrays of superconducting SPDs compatible with CMOS array readout architectures.
Funder
Defense Sciences Office, DARPA
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献