Dynamic loss of HTS field windings in rotating electric machines

Author:

Kails KevinORCID,Zhang HongyeORCID,Machura PhilipORCID,Mueller Markus,Li QuanORCID

Abstract

Abstract High-temperature superconducting (HTS) coated conductors (CCs) are frequently applied under complex electromagnetic fields to develop powerful, compact and efficient rotating electric machines. In such electric machines, field windings constructed by HTS CCs are adopted to increase the magnetic loading of the machines. The HTS field windings work with DC currents and due to the time-varying magnetic field environment, dynamic losses occur. In addition to the AC magnetic field, there is a large DC background field, which is caused by the self-field of the HTS field windings. This paper investigates the dynamic loss in HTS CCs using an H-formulation based numerical model for a wide range of combined DC and AC magnetic fields under various load conditions, and two different methods have been used for calculating dynamic loss. The results show that a DC background field plays a vital role to accurately predict the dynamic losses in HTS CCs. A DC background field of 75 mT can triple the dynamic loss as compared to only applying an AC magnetic field. In addition, the theoretical definition for the dynamic region for the case of solely an AC field has been found inapplicable in the case of a DC background field. Finally, a case study is done based on our double claw pole power generator to estimate the dynamic loss in an actual rotating machine, which was found to be 13.3 W. A low dynamic loss was achieved through the generator field winding design, which prevents high magnetic field fluctuations in the winding, since it is located at a distance from the air gap and armature coils. Furthermore, the rotational speed is very low and hence the resultant magnetic field frequency is low as well.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3