Coplanar superconducting resonators with nonlinear kinetic inductance bridge

Author:

Kalacheva DariaORCID,Fedorov GlebORCID,Khrapach IvanORCID,Astafiev OlegORCID

Abstract

Abstract We present a model and experimental realization of coplanar superconducting resonators terminated by a shunting kinetic inductance bridge made of ultra-thin Al films. The fabrication process that we propose allows us to create very homogeneous films, which makes them suitable for many applications in quantum devices. Due to the specific properties of the films, the resonators exhibit a Duffing oscillator behavior resulting in bifurcations and interactions between different power sources, which was previously observed in similar systems. Moreover, since the nonlinearity of such a system is concentrated at the bridge, while the wave propagates in a linear environment, it is possible to propose a simple model that accurately describes its behavior. We show that, when resonators are operated within a notch-port architecture, our model has a closed-form solution for the transmission coefficient and allows one to accurately extract parameters of the system, including the kinetic inductance of the bridge and its depairing current. Potential applications of such systems include tunable resonators, photon detectors, bifurcation and parametric amplifiers, as well as a measurement device for studying the properties of thin films.

Funder

Russian Science Foundation

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3