Effects of K excess in microstructure of (Ba0.6K0.4)Fe2As2 superconducting powders

Author:

Bellingeri EmilioORCID,Bernini Cristina,Loria Federico,Traverso AndreaORCID,Leveratto AlessandroORCID,Braccini ValeriaORCID,Ballarino Amalia,Malagoli AndreaORCID

Abstract

Abstract Iron-based superconductors (IBSs) are promising for high-field applications due to their exceptional characteristics, like ultrahigh upper critical field and minimal electromagnetic anisotropy. Creating multifilamentary superconducting wires with elevated transport critical current density is essential for practical use. The Powder in Tube (PIT) technique is commonly used for this purpose, but achieving optimal results requires careful exploration of powder microstructural properties. This is particularly crucial for superconductors like (Ba,K)122, the IBS most promising from an applicative point of view, where factors such as reactivity, volatility, and toxicity of constituent elements affect phase formation. Potassium volatility often leads to nonstoichiometric conditions, introducing excess potassium in the formulation. This study focuses on the impact of potassium excess δ on the microstructural properties of the ‘optimally doped’ (Ba0.6K0.4+δ )Fe2As2 phase (0 ⩽ δ ⩽ 0.08). Using techniques like Scanning Electron Microscopy, x-ray diffraction, and temperature-dependent magnetization measurements, we demonstrate the ability to produce nearly pure powders of the superconducting phase with controlled grain size. Our findings are relevant for PIT wire fabrication, where grain size strongly affects mechanical deformation. Grain size also influences transport properties, as observed in previous studies, where reducing grain size enhanced current-carrying capability at high magnetic fields.

Funder

CERN

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3