Magnetization AC losses of MgB2 wires with thin filaments and resistive sheath

Author:

Kováč JánORCID,Kováč PavolORCID,Rindfleisch Matt,Tomsic Michael

Abstract

Abstract Magnetization AC losses of fine-filamentary MgB2 wires with resistive CuNi sheaths were measured. The effects of varying the number of filaments (114–342, corresponding to effective filament diameters of 14–20 μm), twist pitch (10–30 mm) and outer sheath material on the total AC loss were studied. For a better understanding of individual loss contributions, the effects of varying applied temperature, magnetic field, and frequencies were examined. It is found that hysteresis loss per volume decreases with the reduced filament size and that coupling current losses play a dominant role. The effect of decoupling by twisting was clearly observed for the smallest twist pitches. Considering the possible degradation of transport currents by twisting, AC losses were also normalized by the critical currents of the same wires. While twisting to short pitch decreases losses significantly, it apparently does not reduce the transport current. Consequently, the fine-filamentary MgB2 wires with resistive CuNi sheath examined in this paper are excellent candidates for future low loss applications. Unlike ReBCO tapes, round MgB2 wires enable easy single strand twisting, and the braiding or cabling, of wires into a variety of specific shapes and diameters.

Funder

Slovak Scientific Agency

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Reference22 articles.

1. AC loss in superconducting tapes and cables;Oomen,2000

2. Influence of filament number and size on the basic properties of in situ made MgB2 wires

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Rutherford MgB2 cable with resistive NbTi barriers and a CuNi30 sheath;Superconductor Science and Technology;2024-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3