Stabilization and control of persistent current magnets using variable inductance

Author:

Brouwer LucasORCID,Shen TengmingORCID,Norris Ryan,Hafalia Aurelio,Schlueter Ross,Wang Li,Ciston Jim,Ercius Peter,Ji Qing,Mankos Marian,Ophus Colin,Stibor Alexander,Schmid Andreas,Minor Andrew M,Denes Peter

Abstract

Abstract Ultra-stable, tunable magnetic fields are desirable for a wide range of applications in medical imaging, electron microscopy, quantum science, and atomic physics. Superconducting magnets operated in persistent current mode, with device current flowing in a closed superconducting loop disconnected from a power source, are a common approach for applications with the most stringent requirements on temporal field stability. We present a method for active control of this persistent current by means of dynamic inductance change within the superconducting circuit. For a first realization of this general technique, we consider a variable superconducting inductor placed in series with the main magnet. The inductor acts as a dynamic flux storage device capable of transferring flux to or from the main magnet through inductance change. This allows for fine and fast adjustments of the persistent current without the use of thermal switches that limit the speed and accuracy of many present-day methods. With first experiments employing this technique, we demonstrate stabilization of a 1.95 T Nb–Ti round lens for electron microscopy against decay resulting from residual losses in the superconducting circuit, and more generally show flexibility for precise control over the magnitude and waveform of the persistent current.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3