Superconducting fault current limiter (SFCL) for a power electronic circuit: experiment and numerical modelling

Author:

Chen XiaoyuanORCID,Gou Huayu,Chen YuORCID,Jiang ShanORCID,Zhang MingshunORCID,Pang Zhou,Shen BoyangORCID

Abstract

Abstract In this article, the superconducting fault current limiter (SFCL) explores its relatively new application: the power electronic circuit. The investigation of this compact-size SFCL involves both the experiments and numerical modelling. A bifilar-shape resistive-type SFCL was used in a DC-DC power conversion circuit, for the purpose of suppressing the overwhelming fault current by 3 different types of faults: the input fault, output fault, and switch fault. The numerical modelling of SFCL used an electromagnetic-thermal coupled finite-element method (FEM) model based on the H -formulation. For these 3 types of faults with the 100 ms fault duration, good agreement was found between the experiments and simulations. Both the experiment and modelling method were used to test the SFCL performance with different fault durations (50 ms vs 100 ms). For some severe fault conditions (e.g., higher fault current and longer fault duration) that experiments were difficult or unable to realise, the FEM modelling of SFCL was used to simulate the performance. Overall, the FEM modelling of SFCL can well match the SFCL experiment, and has the advantage of showing more information such as the current distribution and temperature. Both the SFCL experiments and numerical modelling offer new results and novel concepts of SFCL investigation, which can be helpful for the design of future SFCLs and the compact protection schemes for power electronic devices.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3