Trapped magnetic field distribution above a superconducting linear Halbach array

Author:

Houbart MORCID,Fagnard J-F,Dular J,Dennis A R,Namburi D KORCID,Durrell J HORCID,Geuzaine C,Vanderheyden B,Vanderbemden P

Abstract

Abstract In applications requiring a large magnetic force, permanent magnets with non-parallel magnetization directions can be assembled in a Halbach array to generate a large gradient of magnetic flux density. The saturation magnetization of permanent magnets, however, brings a fundamental limit on the performance of this configuration. In the present work, we investigate experimentally the assembly of cuboid bulk, large grain melt-textured YBa2Cu3O 7 x superconductors ( 14 × 14 × 14 mm3) with orthogonal c-axes so as to form a basic unit of Halbach array. The experiments are carried out at 77 K. The experimental distribution of the magnetic flux density above the array of trapped-field superconductors is compared to a similar array made of permanent magnets. A simple analytical model is developed and is shown to accurately reproduce the main experimental observations. The results suggest that a redistribution occurs in the current flowing in the central sample when the distance between the superconductors is reduced, whereas the neighbouring superconductors are unaffected. It is shown that this current redistribution yields a reduced contribution of the central sample to the magnetic flux density above the centre of the array and a new negative contribution associated with stray fields to the magnetic flux density at this location. This interpretation is confirmed by modelling of the distribution of transport currents in the superconductor using a 3D finite element model.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3