Variability modes of September Arctic sea ice: drivers and their contributions to sea ice trend and extremes

Author:

Karami Mehdi PashaORCID,Koenigk Torben,Tremblay Bruno

Abstract

Abstract The variability of September Arctic sea ice at interannual to multidecadal time scales in the midst of anthropogenically forced sea ice decline is not fully understood. Understanding Arctic sea ice variability at different time scales is crucial for better predicting future sea ice conditions and separating the externally forced signal from internal variability. Here, we study modes of variability, extreme events and trend in September Arctic sea ice in 100–150 year datasets by using time-frequency analysis. We extract the non-linear trend for sea ice area and provide an estimate for the sea ice loss driven by anthropogenic warming with a rate of ∼−0.25 million km2 per decade in the 1980s and accelerating to ∼−0.47 million km2 per decade in 2010s. Assuming the same accelerating rate for sea ice loss in the future and excluding the contributions of internal variability and feedbacks, a September ice-free Arctic could occur around 2060. Results also show that changes in sea ice due to internal variability can be almost as large as forced changes. We find dominant modes of sea ice variability with approximated periods of around 3, 6, 18, 27 and 55 years and show their contributions to sea ice variability and extremes. The main atmospheric and oceanic drivers of sea ice modes include the Arctic Oscillation and Arctic dipole anomaly for the 3 year mode, variability of sea surface temperature (SST) in the Gulf Stream region for the 6-year mode, decadal SST variability in the northern North Atlantic Ocean for the 18-year mode, Pacific Decadal Oscillation for the 27 year mode, and Atlantic Multidecadal Oscillation for the 55 year mode. Finally, our analysis suggests that over 70% of the sea ice area loss between the two extreme cases of 1996 (extreme high) and 2007 (extreme low) is caused by internal variability, with half of this variability being related to interdecadal modes.

Funder

ARCPATH

Swedish Research Council FORMAS

Discovery Program

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3