Attributing daily ocean temperatures to anthropogenic climate change

Author:

Giguere JosephORCID,Gilford Daniel MORCID,Pershing Andrew JORCID

Abstract

Abstract Ocean temperatures are rising and hit record levels around the world in 2023. While trends are clear and likely strongly connected to human-caused climate change, the oceans also exhibit variability on the daily level, leading to local extremes such as marine heatwaves. We present an operational system to estimate the impact of human-caused climate change on daily sea surface temperatures anywhere in the ocean. This system uses a multi-method approach combining observed trends and paired control/forced climate model runs from CMIP6. Our approach is novel in its flexibility and ease of application for global, daily use for any day since the beginning of the satellite era (1982–2023). The system allows for rapid evaluation for further study of attributable ocean temperatures and real-time communications of attributable ongoing events. We apply the system to well-documented heatwaves in the Tasman Sea, Gulf of Maine, and Mediterranean Sea over the past decade, as well as global conditions in July 2023, to confirm that the system produces estimates consistent with other attribution methods, and to simulate how our system handles interesting events as they are occurring. Each of these events strongly reflected impacts of climate change: their temperatures were consistently made at least four times as likely to occur in our human-influenced climate than in a world without climate change. Meanwhile, in July 2023, almost all ( > 70 %) of the ocean’s temperatures were made at least twice as likely to occur on any given day. Rapid attribution of daily ocean temperatures provides a pathway for quantifying the influence of climate change on ecological impacts like coral bleaching and on ocean-generated/influenced storms like tropical cyclones.

Funder

Eric and Wendy Schmidt Fund for Strategic Innovation

The CO2 Foundation

High Meadows Foundation

William and Flora Hewlett Foundation

Bezos Earth Fund

The Schmidt Family Foundation

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Fingerprints on Daily Temperatures in 2022;Bulletin of the American Meteorological Society;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3