Effects of eastern vs. central Pacific El Niño on Northern Hemisphere photosynthetic seasonality

Author:

Dannenberg Matthew PORCID,Johnston Miriam R

Abstract

Abstract The El Niño–Southern Oscillation (ENSO) affects many climatic controls on vegetation activity, driving interannual variation in timing (phenology) and magnitude of terrestrial carbon uptake. However, the climatic effects of ENSO can differ for sea surface temperature (SST) anomalies primarily centered in the eastern vs. central Pacific (EP and CP, respectively). Here, we examine the extent to which EP and CP SST anomalies affect Northern Hemisphere photosynthetic seasonality and whether their effects differ. Using two decades of satellite near-infrared reflectance of vegetation (NIRv) and FLUXNET2015 gross primary production, we estimated annual 0.05° start and end of growing season timing corresponding to the onset and offset of photosynthetic activity, as well as peak NIRv magnitude as a proxy for peak growing season productivity. We find that correlations between Northern Hemisphere photosynthetic timing/magnitude and ENSO differ for EP- and CP-centered SST anomalies, though in many regions the effects and differences between them are quite small. Warmer SSTs generally led to an earlier start of the photosynthetic season, especially in North America and parts of Eurasia. However, the magnitude (and even direction) of the relationships between start of season and SST differed for CP- and EP-dominated events. Correlations of both peak NIRv magnitude and end of season timing with ENSO tended to be smaller in magnitude and more regionally idiosyncratic, though with strong evidence of different effects of CP and EP SSTs. In southern North America, CP SSTs (but not EP SSTs) were positively associated with peak NIRv, while in boreal regions of North America and Eurasia, CP SSTs were negatively associated with peak NIRv (despite small positive associations with EP SSTs). Differences between the effects of EP and CP SST anomalies suggest that short-term vegetation forecasts based on aggregate ENSO indices could be improved by separately considering the EP and CP components.

Funder

National Aeronautics and Space Administration

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3