Biocompatible coatings for CMUTs in a harsh, aqueous environment

Author:

Zhuang X,Nikoozadeh A,Beasley M A,Yaralioglu G G,Khuri-Yakub B T,Pruitt B L

Abstract

The results of coating capacitive micromachined ultrasonic transducer (CMUT) arrays with two different biocompatible materials, parylene-c and polydimethylsiloxane (PDMS), are reported. These materials were characterized for use with CMUTs to enable direct contact transcutaneous and in vivo imaging. A passivation coating is required to provide electrical isolation to the active areas of the device and to protect it from a corrosive environment. It must also provide good mechanical characteristics to void imaging artifacts. The coated devices were compared side by side with uncoated devices for testing in air. The resonant frequency, collapse voltage and crosstalk were sampled. Parylene coated CMUTs were also tested underwater using pulse excitation. The parylene coating provided electrical insulation to the aqueous solution for 14 days. Both coatings showed a decrease in device resonant frequency and an increase in collapse voltage, as expected from the proposed theory.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3