Geometric circuit analysis

Author:

Hong Seok-InORCID

Abstract

Abstract The Smith rectangle symbolises the resistor and its width, height, aspect ratio, and area represent the current through, the voltage across, the resistance of, and the power dissipated in the resistor, respectively. In this article, the mosaic of rectangles (MOR) is introduced as a geometric approach to connected planar resistive network circuits with an ideal voltage source. In the MOR, the geometric Kirchhoff’s current and voltage laws are expressed as width and height conservations, respectively and are automatically satisfied. Four basic circuits are considered as applications of geometric circuit analysis. Resistors in series and in parallel are analysed using the MOR, and the effect of changing one resistor is visualised by superposing the initial and new MORs. The effect of loading an unloaded voltage divider with a parallel resistor is also visualised. The Wheatstone bridge is explored as an example of rather complicated resistive networks and the consistency of the assumed current directions, the shape of the MOR, and the geometric Kirchhoff’s laws is discussed. The geometric and game-like circuit analysis would be beneficial to high school and university students as well as their teachers.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3