Abstract
Abstract
The United States’ Global Positioning System (GPS), and similar geolocation systems such as Galileo, GLONASS, and Beidou are used by people all over the globe. Modern receivers of these global navigation satellite systems can track multiple satellites from different constellations. Casual, non-technical users are probably aware that the positional information provided is typically accurate to within a few meters. We could expect physics students to infer that, because these systems rely on the travel time of radio signals, this implies time measurement accuracy on the scale of tens of nanoseconds. This feature has led to GPS-enabled Internet time servers providing stratum 1 accuracy for under $1000. In this paper, we will show that we can couple a GPS unit to a field programmable gate array (FPGA) to determine the temperature in a room. The more serious application of this GPS-FPGA pairing is to provide precise time-stamping of events, thereby synchronizing data collection between stations across a room or across the globe.
Subject
General Physics and Astronomy,Education