A diffraction experiment at the near field: the homemade Talbot effect

Author:

Torcal-Milla Francisco JoseORCID

Abstract

Abstract Diffraction refers to a kind of optical phenomena which occurs when light approaches an element (object or aperture) whose features are in the range of the illuminating wavelength (small apertures, sharp edges). It can be explained by means of the undulatory nature of light or also geometrically by using simple ray optics. Diffraction phenomena are impressive and not intuitive, so it makes them very interesting to bring examples to the classroom. The most popular diffraction experiments show effects in Fraunhofer regime, that is to be said, far from the diffractive object. Common examples are the single or double slit experiments. In this manuscript, we propose and show a less common diffractive effect that occurs in the Fresnel regime, near to the diffractive object. It is the Talbot effect or self-imaging phenomenon, which appears by illuminating a diffraction grating with a collimated monochromatic beam. It consists of the apparition of replicas (self-images) of the grating intensity pattern at periodic distances, multiples of the so-called Talbot distance. We show how this effect may be shown into the classroom with cheap and easy to find elements. In addition, we take advantage of its dependence on the coherence degree of the source to introduce the concept of optical coherence and show its effect on the contrast of the Talbot self-images. These experiments could be appropriate for undergraduate students or introductory physics courses.

Funder

Fundación Ibercaja y Universidad de Zaragoza

Ministerio de Ciencia e Innovación of Spain

Gobierno de Aragón - Fondo Social Europeo

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3