Prior knowledge of potential energy and the understanding of quantum mechanics

Author:

Krijtenburg-Lewerissa KimORCID,Pol Henk,Brinkman Alexander,van Joolingen Wouter

Abstract

Abstract Quantum mechanics (QM) has become part of many secondary school curricula. These curricula often do not include the mathematical tools for a formal, mathematical introduction of QM. QM therefore needs to be taught at a more conceptual level, but making secondary school students understand counterintuitive QM concepts without introducing mathematical formalism is a challenge. In order to accept QM, students not only have to see the need of it, but also have to see that QM is understandable and logical. Dutch secondary school students are familiar with potential energy (PE) in the context of gravitational and elastic energy. Therefore, the introduction of QM by using the potential wells and tunneling with emphasis on students’ prior knowledge of PE could be a way to make QM more understandable and logical. To explore this, we investigated the relation between the understanding of energy diagrams and the understanding of the potential well and tunneling. A module was created to promote students’ understanding of PE in classical context. Then, a quasi-experimental intervention was used, in which the experimental group received additional lessons using the module on classical energy diagrams before being taught QM. Two tests were developed in order to determine students’ understanding of PE and QM. The results of the tests showed that the experimental group not only had better understanding of PE diagrams, but also of QM even before they were being taught QM. Analysis of the tests also showed that there was a significant correlation between the understanding of PE diagrams and the understanding of QM. Therefore, the results of this study indicate that emphasis on PE can be used to reduce the gap between students’ prior knowledge and QM.

Funder

The Netherlands Organization for Scientific Research

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Education

Reference27 articles.

1. Analysis of secondary school quantum physics curricula of 15 different countries: different perspectives on a challenging topic;Stadermann;Phys. Rev. Phys. Educ. Res.,2019

2. Making the transition from classical to quantum physics;Dutt;Teach. Sci.,2011

3. What is light?;Henriksen;Sci. Educ.,2018

4. Observation in quantum physics: challenges for upper secondary physics students in discussing electrons as waves;Huseby;Phys. Educ.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Undergraduate students’ models of single- and multi-electron atoms;International Journal of Science Education;2024-01-24

2. Symposium on Teaching and Learning Quantum Physics;Challenges in Physics Education;2024

3. Schrödinger’s equation from Snell’s law;European Journal of Physics;2022-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3