A modern, rapid and simple investigation of Ampère’s law

Author:

Cicuta PietroORCID,Organtini GiovanniORCID

Abstract

Abstract Classical physics results are often taught purely from the theoretical side. Key results, especially in electromagnetism, are typically not explored experimentally, and in applications students are then expected to leap straight into more complex scenarios that make use of these principles in electronics, sensors and instrumentation. This is unfortunate because not all individuals are equally able to learn well purely from the mathematical angle, and even those who do are not exposed to exploring the magnitude of competing effects, for example isolating a particular magnetic field signal from the background of the Earth’s field. An experiment is presented here to test Ampère’s law with a setup that can be assembled out of everyday materials with minimal components—a smartphone, a DC power supply, wires—in a procedure that can be completed in just a few hours. The data from the three magnetic field sensors of the phones, together with the gyroscope sensors providing position, are recorded and numerically integrated. The experiment is also demonstrated using sensors collected by an Arduino board instead of a smartphone. The experiment allows to measure the net current carried by wires inside the closed path over which the magnetic field is integrated, i.e. Ampère’s law. This experimental approach to exploring Ampère’s Law can be adapted towards high school or university demonstrations, depending on the level of accuracy and detail that one aims to pursue.

Funder

Sapienza University of Rome

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3