The impact of AI in physics education: a comprehensive review from GCSE to university levels

Author:

Yeadon WillORCID,Hardy Tom

Abstract

Abstract With the rapid evolution of artificial intelligence (AI), its potential implications for higher education have become a focal point of interest. This study delves into the capabilities of AI in physics education and offers actionable AI policy recommendations. Using openAI’s flagship gpt-3.5-turbo large language model (LLM), we assessed its ability to answer 1337 physics exam questions spanning general certificate of secondary education (GCSE), A-Level, and introductory university curricula. We employed various AI prompting techniques: Zero Shot, in context learning, and confirmatory checking, which merges chain of thought reasoning with reflection. The proficiency of gpt-3.5-turbo varied across academic levels: it scored an average of 83.4% on GCSE, 63.8% on A-Level, and 37.4% on university-level questions, with an overall average of 59.9% using the most effective prompting technique. In a separate test, the LLM’s accuracy on 5000 mathematical operations was found to be 45.2%. When evaluated as a marking tool, the LLM’s concordance with human markers averaged at 50.8%, with notable inaccuracies in marking straightforward questions, like multiple-choice. Given these results, our recommendations underscore caution: while current LLMs can consistently perform well on physics questions at earlier educational stages, their efficacy diminishes with advanced content and complex calculations. LLM outputs often showcase novel methods not in the syllabus, excessive verbosity, and miscalculations in basic arithmetic. This suggests that at university, there’s no substantial threat from LLMs for non-invigilated physics questions. However, given the LLMs’ considerable proficiency in writing physics essays and coding abilities, non-invigilated examinations of these skills in physics are highly vulnerable to automated completion by LLMs. This vulnerability also extends to pysics questions pitched at lower academic levels. It is thus recommended that educators be transparent about LLM capabilities with their students, while emphasizing caution against overreliance on their output due to its tendency to sound plausible but be incorrect.

Publisher

IOP Publishing

Reference37 articles.

1. Education in the era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning;Baidoo-Anu,2023

2. ChatGPT: bullshit spewer or the end of traditional assessments in higher education?;Rudolph;J. Appl. Learn. Teach.,2023

3. Artificial intelligence in teaching and learning: what questions should we ask of ChatGPT?;Rospigliosi;Interact. Learn. Environ.,2023

4. Attention is all you need;Vaswani,2017

5. Gemini: a family of highly capable multimodal models;Gemini Team Google,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3