Plasma-deposited reactive species assisted synthesis of colloidal zinc-oxide nanostructures

Author:

Kutasi KingaORCID,Péter LászlóORCID,Tóth Zsolt

Abstract

Abstract A surface-wave microwave discharge is applied to deposit reactive oxygen and nitrogen species (RONS) into the liquid subsequently used as a medium for laser ablation of a Zn metallic target. It is shown that during laser ablation in plasma-treated liquids the H2O2 concentration decreases, while in deionized water (DIW) significant H2O2 is produced. Meanwhile, the pH—initially adjusted by applying reductive metals—increases in the acidic liquids and decreases in the alkaline ones. During months of storage the pH of colloids stabilize around pH 6, which insures the long-term stability of RONS. It is demonstrated that in DIW metallic Zn NPs are created, which gradually oxidize during storage, while in the plasma-treated liquids ZnO NPs are produced with the mean size of 18 nm. In the alkaline plasma-treated liquid the NPs form large aggregates, which slows the dissolution of NPs. In the acidic and neutral solutions besides NPs nanosheets are also formed, which during storage evolve into nanosheet networks as a result of the dissolution of NPs. The band gap of the colloidal ZnO is found to decrease with the formation of aggregates and nanosheet networks. The ZnO NPs ablated in plasma-treated liquids exhibit a high-intensity visible emission covering the green-to-red spectral region. The photoluminescence spectra is dominated by the orange-red emission—previously not detected in the case of laser-ablated ZnO NPs and attributed to the interstitial Zn and oxygen sites—and the yellow emission, which can be attributed to the OH groups on the surface. It is shown that during months of storage, due to the dissolution of NPs and formation of nanosheets, the intensity of the visible emission decreases and shifts to the blue-green spectral region.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3