Abstract
Abstract
The recombination dynamics are studied in viscous electron–hole plasma, consisting of electrons and photo-generated heavy and light holes, formed in the high-mobility mesoscopic GaAs channel. It is shown that an increase in the pump power reduces the concentration and mobility of background electrons, which, in turn, slows down their recombination with photogenerated holes. At a critical pump power, the recombination time begins to decrease, which is a consequence of the transition of a viscous electron–hole plasma from the hydrodynamic regime to the Drude diffusive regime. The observed transition occurs when the scattering of electrons with disorder begins to dominate over electron–electron scattering, which leads to the transformation of an inhomogeneous Poiseuille charge flow into a homogeneous diffusion flow. As a result, an optical analogue of the Gurzhi effect has been found.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献