Investigation into the magnetic properties of CoFeNiCr y Cu x alloys

Author:

Harris James,Leong Zhaoyuan,Gong Peng,Cornide Juan,Pughe Charlotte,Hansen Thomas,Quintana-Nedelcos Aris,Rowan-Robinson RichardORCID,Dahlborg Ulf,Calvo-Dahlborg Monique,Goodall Russell,Rainforth Mark,Morley NicolaORCID

Abstract

Abstract The search for cheap, corrosion-resistant, thermally-mechanically stable functional magnetic materials, including soft magnetic and magneto-caloric materials has led to research focused on high entropy alloys (HEAs). Previous research shows that alloying elements with negative enthalpies of mixing can facilitate a second-order phase transition. On the other side of the spectrum, compositional segregation cause by positive enthalpy of mixing alloying additions (such as Cu) may also be used to tune magnetic properties. This paper studies the structural, magnetic and magneto-caloric effect of the FCC alloys CoFeNiCr y Cu x (x = 0.0, 0.5, 1.0 and 1.5, y = 0.0, 0.8 and 1.0) to tune these properties with Cu and Cr alloying. Scanning electron microscopy of the compositions show nanoparticles forming within the grains as the Cu concentration increases. Cr addition to CoFeNiCu1.0 has a larger effect on the magnetic and magneto-caloric properties compared to the Cu addition to CoFeNiCr1.0. The addition of Cu (x = 0.5) to CoFeNiCr1.0 improved both the saturation magnetisation and Curie temperature; addition of Cr (y = 1.0) to CoFeNiCu1.0 decreased the Curie temperature by 900 K. All alloys were determined to have a second-order phase transition around their Curie temperature. The refrigerant capacity at 2 T was found to be similar to existing HEAs, although the Curie temperatures were lower than room temperature. Based on this data the CoFeNiCr0.8Cu composition was fabricated to increase the Curie temperature towards 300 K to explore these HEAs as new candidates for room temperature magneto-caloric applications. The fabricated composition showed Curie temperature, saturation magnetisation, and refrigerant capacity increasing with the small reduction in Cr content.

Funder

FP7

Engineering and Physical Sciences Research Council

Royal Society

Leverhulme Trust

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference45 articles.

1. An EU strategy on heating and cooling 2016;J. Chem. Inf. Model.,2016

2. Energy flow charts;Lawrence Livermore,2019

3. International energy outlook;Outlook,2019

4. What’s so attractive about magnetic refrigeration?;Yebiyo;CIBSE J.,2019

5. Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound;Chen;Chin. Phys.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3