The flashover of epoxy initiated by micron metal particles under DC voltage: phenomenon and mechanism

Author:

Qi BoORCID,Yang ZhuodongORCID,Yang XiaoORCID,Huang Meng,Gao ChunjiaORCID,Zhang Yi,Luo Yuan,Lu Licheng,Li Chengrong

Abstract

Abstract Epoxy post-insulator is one of the key parts in SF6 gas-insulated DC wall bushing, which is irreplaceable in high voltage direct current transmission projects. Flashovers occur on post-insulators frequently, where a great number of tiny metal particles exist. The micron metal particles attached to the epoxy will change the insulation state of the surface. However, this relation between microstructure of material and macroscopic electrical properties on flashover would still arouse controversy. In order to study the effect of particles on the flashover characteristics, the particles generated from wear of spring in DC wall bushing were selected, the surface potential decay along surface and the DC flashover voltage of epoxy attached with particles were measured. The results show that the discrete particles could increase surface trap level by 0.025 eV under the effect of Van der Waals force. Furthermore, the deeper traps could capture the charge during the streamer development and inhibit the flashover, when the particle amount less than 500 per mm2. If the particles are more enough to form the continuous paths, these conductive paths could promote the streamer to propagate, which shortens the insulation distance, increases the electric field, and decreases the flashover voltage by 50% finally.

Funder

the Science and Technology Project of State Grid Corporation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3