Flexible thermoelectric films based on interconnected magnetic nanowire networks

Author:

da Câmara Santa Clara Gomes TristanORCID,Marchal NicolasORCID,Araujo Flavio AbreuORCID,Piraux LucORCID

Abstract

Abstract Recently, there has been increasing interest in the fabrication of flexible thermoelectric devices capable of cooling or recovering waste heat from hot surfaces with complex geometries. This paper reviews recent developments on three-dimensional networks of interconnected ferromagnetic nanowires, which offer new perspectives for the fabrication of flexible thermoelectric modules. The nanowire arrays are fabricated by direct electrodeposition into the crossed nanopores of polymeric templates. This low-cost, easy and reliable method allows control over the geometry, composition and morphology of the nanowire array. Here we report measured thermoelectric characteristics as a function of temperature and magnetic field of nanowire networks formed from pure metals (Co, Fe, Ni), alloys (NiCo, NiFe and NiCr) and FM/Cu multilayers (with FM = Co, Co50Ni50 and Ni80Fe20). Homogeneous nanowire arrays have high thermoelectric power factors, almost as high as their bulk constituents, and allow for positive and negative Seebeck coefficient values. These high thermoelectric power factors are essentially maintained in multilayer nanowires which also exhibit high magnetic modulability of electrical resistivity and Seebeck coefficient. This has been exploited in newly designed flexible thermoelectric switches that allow switching from an ‘off’ state with zero thermoelectric output voltage to an ‘on’ state that can be easily measured by applying or removing a magnetic field. Overall, these results are a first step towards the development of flexible thermoelectric modules that use waste heat to power thermally activated sensors and logic devices.

Funder

ARC

Wallonia/Brussels Community

Research Science Foundation of Belgium

FRIA

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3