Recent progress in in situ/operando analysis tools for oxygen electrocatalysis

Author:

Yoo Ji Mun,Shin Heejong,Park Subin,Sung Yung-EunORCID

Abstract

Abstract Fuel cell and water electrolyzer technology have been intensively investigated in the last decades toward sustainable and renewable energy conversion systems. For improved device performance and service life, nanostructured electrocatalysts on electrode have been extensively developed based on the principle of structure-activity-stability correlation. However, overall device efficiency is seriously hindered by sluggish oxygen electrocatalysis, including oxygen reduction reaction and oxygen evolution reaction. As a result, tremendous efforts have been made to construct the most active surfaces with robust durability. For knowledge-based approaches toward systematic development of highly functional nanostructures, fundamental principles within oxygen electrocatalysis should be uncovered including reaction intermediate, active site structures, and atomic dissolution from surface. However, conventional ex situ characterizations only provide a static picture of electrode surfaces without electrocatalysis. On the other hand, in situ/operando analyses allow us to directly monitor dynamics on electrode under operating conditions. In this review, we will introduce a set of in situ/operando analytical tools and summarize their contribution to fundamental researches on oxygen electrocatalysis. Taking both precious and non-precious electrocatalyst materials as examples, the most impending issues in oxygen electrocatalysis are covered with in situ/operando studies to highlight the power of in situ/operando techniques and encourage further efforts on advanced analytic techniques.

Funder

Institute for Basic Science

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3