Abstract
Abstract
As factories and vehicles become more automated, accurate and low-latency sensing of motor shaft speed and position is critical for process control, system reliability, and safety. To address these needs, a highly precise and fast vector magnetometer is required that has the capability to detect magnetic field variations also at tiny angles. We present the development of an ultrathin tapered fiber interferometer-based highly accurate sensor suspended in a magnetorheological fluid film, which holds the capability of simultaneously detecting magnetic field intensity and its direction in three-dimensional space. The sensing mechanism counts on the magnetism-regulatable effective index amendment of exciting asymmetric cladding modes in a nonadiabatic biconical tapered fiber interferometer. Based on the azimuth-dependent anisotropic distribution of nanoparticles surrounding the fiber, such a magnetometer has achieved the maximum magnetic field sensitivity of ∼16.4 pm mT−1 at 0° whereas at small angles of ±1° and ±2° the sensitivities are observed of ∼ ±14.6 pm mT−1 and ∼ ±11.7 pm mT−1, respectively over a larger span of 0–567 mT.
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献