Abstract
Abstract
We suggest a strategy for designing regular 2D arrays of nanoholes (NHs) in metal films with far-field scattering properties similar to that of regular 2D arrays of nanodisks (NDs) with the same periodicity. Full-wave simulations for perfectly conducting, Ag and Au NDs and respectively designed arrays of NHs demonstrate a minor difference between far-field properties either at wavelengths corresponding to Wood–Rayleigh anomalies of the arrays or in a broad wavelength range, depending on the array periodicity and sizes of NDs (NHs). Our results have broad implications in plasmon-enhanced-driven applications, including optoelectronic and photovoltaic devices, where the NH arrays are preferable to be fabricated for nano-structured optics.
Funder
National Science Foundation
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials