Abstract
Abstract
A multilayer graphene frequency doubler (GFD) with inductance–capacitor resonators (LCRs) and microstrip reflective stubs (MRS) is proposed in this paper. Graphene has strong nonlinear characteristics. Under the excitation of electromagnetic waves, the output power of odd harmonic of graphene is greater than that of even harmonic. Under the joint excitation of electromagnetic wave and bias voltage, the even harmonic output power of graphene is enhanced and the odd harmonic is suppressed, which is very suitable for making GFD. On the basis of analyzing the conductivity of graphene, the symbolically defined device model of multilayer graphene is established, and the model is applied to GFD circuit, the simulation results are basically consistent with the experimental data. The multiplier efficiency of graphene can be effectively improved by the bias voltage and LCR and the MRS. At an operating frequency of 0.65–1.15 GHz, the minimum conversion loss (CL) of the GFD is 20.57 dB when the input power is 16 dBm.
Funder
National Natural Science Foundation of China
Sichuan Science and Technology Program of China
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献