The surface flashover process under positive lightning impulse voltage: initial stage and evolution

Author:

Meng YangORCID,Xuan Haorui,Deng Zichen,Li Zhichuang,Ding Weidong,Liu Wen

Abstract

Abstract Surface flashover is a crucial issue in the field of electrical insulation, and it involves many complex physical processes. In this paper, the development process of the surface flashover was studied from different methods. The initial process of positive surface streamers in different gas environments (air, N2, CO2) was studied by photoelectric observation. The evolution of positive surface streamers in the air was described based on a 2D fluid model. The influence of the surface trap energy level on flashover development and the relationship between gas adsorption and surface trap energy level was discussed by density functional theory calculation preliminarily. The results showed that the initial ionization process of surface flashover is considered as the collision ionization between the initial electrons and gas molecules and photoionization of high-energy photons. Some of the high-energy photons can not only ionize some gas molecules but also cause the surface of the insulator to emit electrons (photoemission process), which could promote the development of the streamer. Both the ionization of the gas molecules and the photoelectric emission of the insulator surface may determine the initial development of surface flashover. During the process of the flashover, the electron density of the surface streamer (∼1021 m−3) is high and the main streamer tends to develop towards the insulator surface. The attraction of surface streamers changes with the position of the initial electron, and the positive surface charge brings the stronger ionization process, and the negative surface charge has the opposite effect. The band gap of the insulator surface is affected by the adsorption of gas molecules, which is considered as introducing shallow traps on the surface. For impulse voltage, the charge accumulation and internal charge migration may be not evident, the initial photoionization process and initial surface charge distribution affect the flashover process primarily.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3