Fluoropolymer coatings deposited on rotating cylindrical surfaces by HW CVD: experiment and simulation

Author:

Bykov Nikolay Y,Ronshin Fedor V,Safonov Alexey IORCID,Starinskiy Sergey V,Sulyaeva Veronica S

Abstract

Abstract The hot wire chemical vapor deposition method has been adapted to deposit fluoropolymer coatings on small-radius rotating surfaces. The influence of the rotational frequency of a cylindrical sample during the deposition process on the formation of a layer of fluoropolymer coating was studied. It was found that the rotational frequency of the cylindrical sample significantly changed the morphology of the resulting coating. It was shown that with an increase in the sample’s rotational frequency from 1 to 100 rpm, the deposition rate decreased and the coating structure degraded. To establish the reasons for this effect, a numerical study of the flow around a rotating cylindrical sample was carried out for a range of low gas velocities and densities in the reactor. The simulations are based on solving the Navier–Stokes equation with no slip and velocity slip boundary conditions for a rotating surface. It was found that the main reason for the decrease in the deposition rate was associated with the effect of the formation of a closed circulation flow region above the sample’s surface during rotation. The dependence of the characteristic size of this region on the rotational frequency of the cylinder sample was close to linear. The effects of surface boundary conditions were also analyzed.

Funder

Russian Science Foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3