Modeling damage to the solid electrolyte matrix in composite electrodes: role of ionic conductivity

Author:

Shang ShuaipengORCID,Chen Zhipeng,Wang Fenghui

Abstract

Abstract Solid composite electrodes play a critical role in all-solid-sate-batteries, but intercalation-induced expansion of the active materials will cause damage in the matrix and affect the performance of battery. In this work, damage evolution in the solid electrolyte (SE) matrix related to migration of ions/electrons in SE matrix, transport of species in electrode particles, local current densities at the SE/active materials interface, and mechanical deformation of the structure is investigated based on the non-local damage approach. The influence of mechanical damage on the electrochemical performance is modeled by coupling the damage variable and ionic conductivity of the SE. The results indicate that for low ionic conductivity, the damage of the SE matrix is inhomogeneous across the composite electrodes, while for high ionic conductivity, the damage of the SE matrix is uniform. We also investigate the effect of damage on the electrochemical performance of battery and it is shown that capacity loss is significant for low ionic conductivity, but shows little variation under high ionic conductivity.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3