Highly dispersive transmission conditions for a conductive rods-based ultrathin bilayer metastructure

Author:

Abrahamyan Tigran,Ohanyan Gor,Hambaryan David,Kalantar David,Parsamyan HenrikORCID,Haroyan HovhannesORCID,Babajanyan ArsenORCID,Lee KiejinORCID,Nerkararyan KhachaturORCID

Abstract

Abstract We experimentally demonstrate that the transmission of microwave electromagnetic fields through a bilayer metasurface (BMS) composed of thin conductive rods can abruptly change in a narrow frequency range. A theoretical analysis based on the coupled oscillator model is performed to reveal the physical mechanism behind the frequency-dependent properties of such a structure. Two conditions primarily facilitate the observed high dispersion in the BMS. The first one is the resonant interaction between the incident microwaves and rods, leading to the formation of surface standing waves. These waves with radial electric fields enable the coupling of the near-field of rods in structural layers. The second condition is the complex value of the coupling coefficient between rods of different owing to the delayed interaction process between them. The electromagnetic response here can be effectively controlled by varying the distance between layers and the dielectric properties of the interlayer medium.

Funder

Scientific Research Grants through the Higher Education and Science Committee of Ministry of Education, Science, Culture and Sports of Armenia

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3