Sonication-assisted liquid exfoliation and size-dependent properties of magnetic two-dimensional α-RuCl3

Author:

Synnatschke KevinORCID,Jonak MartinORCID,Storm Alexander,Laha Sourav,Köster Janis,Petry Julian,Ott Steffen,Szydłowska Beata,Duesberg Georg SORCID,Kaiser Ute,Klingeler Rüdiger,Lotsch Bettina VORCID,Backes ClaudiaORCID

Abstract

Abstract Originating from the hexagonal arrangement of magnetic ions in the presence of strong spin orbit coupling, α-RuCl3 is considered as model system for the Kitaev-Heisenberg model. While the magnetic properties of α-RuCl3 have been studied in bulk single crystals or micromechanically-exfoliated nanosheets, little is known about the nanosheets’ properties after exfoliation by techniques suitable for mass production such as liquid phase exfoliation (LPE). Here, we demonstrate sonication-assisted LPE on α-RuCl3 single crystals in an inert atmosphere. Coupled with centrifugation-based size selection techniques, the accessible size- and thickness range is quantified by statistical atomic force microscopy. Individual nanosheets obtained after centrifugation-based size selection are subjected to transmission electron microscopy to confirm their structural integrity after the exfoliation. The results are combined with bulk characterisation methods, including Raman and x-ray photoelectron spectroscopy, and powder diffraction experiments to evaluate the structural integrity of the nanosheets. We report changes of the magnetic properties of the nanomaterial with nanosheet size, as well as photospectroscopic metrics for the material concentration and average layer number. Finally, a quantitative analysis on environmental effects on the nanomaterial integrity is performed based on time and temperature dependent absorbance spectroscopy revealing a relatively slow decay (half-life of ∼2000 h at 20 °C), albeit with low activation energies of 6–20 kJ mol−1.

Funder

Deutsche Forschungsgemeinschaft

European Union

German research foundation

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3