Ultrafast photocarrier dynamics in InAs/GaAs self-assembled quantum dots investigated via optical pump-terahertz probe spectroscopy

Author:

Juguilon Vince PaulORCID,Lumantas-Colades Deborah Anne,Omambac KarimORCID,Cabello Neil IrvinORCID,Maeng Inhee,Kang Chul,Somintac ArmandoORCID,Salvador Arnel,Reyes Alexander De LosORCID,Kee Chul-SikORCID,Estacio ElmerORCID

Abstract

Abstract Optical pump-terahertz probe (OPTP) spectroscopy was performed to measure the lifetime of photogenerated carriers in the barrier and the wetting layer (WL) regions of an indium arsenide on gallium arsenide (InAs/GaAs) single-layer self-assembled quantum dot (QD) sample. A modified rate equation model of carrier dynamics was proposed where possible state-filling in both QD and WL is considered. Drude model fitting was also performed to extract the time-dependent plasma frequency and phenomenological scattering time from the terahertz transmission spectra. The results of the OPTP experiment show two prominent recombination processes that occur at different timescales after photoexcitation. These two processes were attributed to carrier recombination in the GaAs barrier and the quantum well-like states of the WL based on the fitted lifetimes. Calculations using the coupled differential rate equations were also able to replicate the experimental trend at low fluence. The lack of agreement between experimental data and numerical calculations at high optical fluence was mainly attributed to the possible saturation of the GaAs density of states. Lastly, the results of the parameter fitting for the plasma frequency and scattering time indicate a transition from the barrier to the WL recombination as the dominant carrier recombination mechanism within the time scale of the OPTP scan. This further lends credence to the proposed model for carrier dynamics in SAQD systems under state-filling conditions.

Funder

Philippine Council for Industry, Energy, and Emerging Technology Research and Development

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3