Length and polarity dependent saturation of the electromechanical response of piezoelectric semiconducting nanowires

Author:

Lopez Garcia Andrés Jenaro,Mouis Mireille,Jalabert ThomasORCID,Cresti AlessandroORCID,Ardila GustavoORCID

Abstract

Abstract The question of the length dependence of the electromechanical response of semiconducting (SC) piezoelectric nanowires (NWs) was explored. We identified a new physical mechanism of piezoresponse saturation, which originates from the combination of the influence of interface traps and piezoelectric polarization in the depleted NW. Our results are in better qualitative agreement with experimental observations than presently existing theories. To do so, we used the finite element method to simulate the coupled set of equations describing mechanical, piezoelectric and SC properties. In order to reduce the number of parameters, simulations focused on the case of uniform ZnO NWs grown along the c-axis. Saturation was explained by the incapacity of surface traps to maintain depletion along the whole NW beyond a certain length, as a result of the electric potential shift induced by piezoelectric polarization. An analytical model was developed to support this analysis. It provided the dependence trends of saturation length and piezoresponse as a function of NW dimensions, doping level, surface traps density and crystal polarity, as well as with external pressure, in fair agreement with simulation results. Moreover, we discovered that one consequence of this mechanism was that crystal polarity had an impact on the smoothness of the radius-dependent transition between high and low piezoresponse under axial stress. These results have important implications for the optimization of electromechanical sensors and nanogenerators based on piezoelectric SC NWs and related composite materials.

Funder

Agence Nationale de la Recherche

European Union

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3