Investigation of stabilization and survival of skyrmion vortices in the presence of magnetic field disorder in two-dimensional lattices: a case study for Janus dichalcogenides

Author:

Yüksel YusufORCID

Abstract

Abstract Due to the lack of inversion symmetry, very large Dzyaloshinskii–Moriya interaction (DMI) has been reported for a series of Janus monolayers of manganese dichalcogenides within the framework of first-principles calculations (Liang et al 2020 Phys. Rev. B 101 184401). However, from the viewpoint of potential applications, the current ongoing research mainly focuses on the magnetism in pristine two-dimensional (2D) materials exhibiting non-zero DMI, and the effects of disorder in such systems remain an open problem since the influence of randomness may create some drastic effects on the magnetism of low dimensional systems. Here, we present Monte Carlo simulation results regarding the magnetic properties of a 2D manganese based Janus dichalcogenide material MnSTe in the presence of quenched random magnetic fields where the local field variables have been sampled from a Gaussian distribution. For the selected benchmark material, it has been found that the magnetic skyrmion vortexes emerging at (10 K, 3 T) may survive in the presence of weak and moderate quenched randomness, which is important from the viewpoint of technological applications. In both the pristine and random field cases, the stabilization of magnetic skyrmions are achieved by the major contribution of the ferromagnetic exchange energy to the total energy of the system, and the materials exhibiting large DMI/exchange ratios may exhibit resilient magnetic skyrmion vortexes in the presence of weak and moderate amount of randomness.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3