An ultra-high figure of merit refractive index sensor with Mie lattice resonance of a toroidal dipole in an all-dielectric metasurface array in the near-infrared

Author:

Tu Shijuan,Liu Xinxin,Liang Kunlin,Fu Qin,Wang Yuanli,Du QingguoORCID,Li ZhengyingORCID

Abstract

Abstract Recently, improvement of the sensing performance of refractive index sensors using the weak far-field radiation and strong local field enhancement properties of toroidal dipole resonances has been intensively studied. Transmission/reflection spectra with significant narrow linewidth resonance have a vital effect in improving the sensing performance. However, a narrower linewidth always leads to smaller modulation depth of the resonance, which hinders the sensing performance to be improved for experiments. In this paper, we design an ultrathin all-dielectric asymmetric X-type metasurface array, where an extremely narrow linewidth and high modulation depth of transmission resonance in the near-infrared have been demonstrated with Mie lattice resonance formed by the coupling of the toroidal dipole with Rayleigh anomalous diffraction. With optimized structure parameters, a transmission dip with a full width at half-maximum as narrow as 0.061 nm and a modulation depth as high as 99.24% are achieved at a wavelength of 943.33 nm with a corresponding Q factor of 15464. According to the analysis of the displacement current distributions and the scattered powers in the far field at the resonant and nonresonant wavelengths, it is confirmed that the narrow linewidth resonance originates from the coupling of the toroidal dipole with Rayleigh anomalous diffraction. A sensitivity and a figure of merit of 321 nm RIU−1 and 5262 RIU−1 are numerically demonstrated respectively for a refractive index sensor based on the all-dielectric asymmetric X-type metasurface array.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3