Spatiotemporally resolved measurements of electric field around a piezoelectric transformer using electric-field induced second harmonic (E-FISH) generation

Author:

Yang JinyuORCID,Barnat Ed V,Im Seong-kyunORCID,Go David B.ORCID

Abstract

Abstract When a piezoelectric transformer (PT) is actuated at its second harmonic frequency by a low input voltage, the generated electric field at the distal end can be sufficient to breakdown the surrounding gas, making them attractive power sources for non-equilibrium plasma generation. Understanding the potential and electric fields produced in the surrounding medium by the PT is important for effectively designing and using PT plasma devices. In this work, the spatiotemporally resolved characteristics of the electric field generated by a PT operating in open air have been investigated using the femtosecond electric field-induced second harmonic generation (E-FISH) method. Electric field components were determined by simultaneously conducting E-FISH measurements with the incident laser polarized in two orthogonal directions relative to the PT crystal. Results of this work demonstrate the spatial distribution of electric field around the PT’s output distal end and how it evolves as a function of time. Notably, the strongest electric field appears on the face of the PT’s distal surface, near the top and bottom edges and decreases by approximately 70% over 3 mm. The time delay between the PT’s input voltage and measured electric field indicates that there is an about 0.45 phase difference between the PT’s input voltage and output signal.

Funder

U.S. Department of Energy/Sandia National Laboratories

National Science Foundation

U.S. Department of Energy

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3