Development of non-invasive blood glucose regression based on near-infrared spectroscopy combined with a deep learning method

Author:

Wang Zhuyu,Zhou LinhuaORCID,Liu Tianqing,Huan Kewei,Jia Xiaoning

Abstract

Abstract Extracting micro-scale spectral features from dynamic blood glucose concentrations is extremely difficult when using non-invasive measurement methods. This work proposes a new machine-learning method based on near-infrared spectroscopy, deep belief network (DBN), and support vector machine (SVR), to improve the prediction accuracy. First, the standard oral glucose tolerance test is used to collect near-infrared spectroscopy and actual blood glucose concentration values for specific wavelengths (1200, 1300, 1350, 1450, 1600, 1610, and 1650 nm), and the blood glucose concentrations is within a clinical range of 70mg/dL~220mg/dL. Second, based on the DBN model, high-dimensional deep features of the non-invasive blood glucose spectrum are extracted. These are used to establish a support vector regression (SVR) model and to quantitatively analyze the influence of spectral sample size and corresponding feature dimensions (i.e., DBN network structure) on the prediction accuracy. Finally, based on data from six volunteers, a comparative analysis of the SVR prediction accuracy is performed both before and after using high-dimensional deep features. For volunteer 1, when the DBN-based high-dimensional deep features were used, the root mean square error (RMSE) of support vector regression (SVR) was reduced by 71.67%, the correlation coefficient (R2) and the P value of Clark grid analysis (P) were increased by 13.99% and 6.28%, respectively. Moreover, we have similar results when the proposed method was carried out on the data of other volunteers. The results show that the presented algorithm can play an important role in dynamic non-invasive blood glucose concentration prediction and can effectively improve the accuracy of the SVR model. Further, by applying the algorithm to six independent sets of data, this research also illustrates the high-precision regression and generalization capabilities of the DBN-SVR algorithm.

Funder

National Natural Science Foundation of P. R. China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3