A potential well model for host-guest chemistry in double-network hydrogels toward mechanochemical coupling and toughening

Author:

Xing Ziyu,Lu HaibaoORCID,Lau DenvidORCID,Fu Yong-Qing

Abstract

Abstract Different from conventional single-network hydrogels, double-network (DN) hydrogels have attracted great research interest due to their ultra-high toughness; however, the working principles behind their complex mechanochemical coupling have not been fully understood. In this study, an extended potential well model is formulated to investigate the host-guest chemistry and the free-energy trap effect, coupled in DN hydrogels undergoing mechanochemical toughening. According to the Morse potential and mean field model, the newly established potential well model can describe the coupled binding of the host brittle network and guest ductile network in the DN hydrogels. A free-energy equation is further proposed to describe the working principles of the mechanochemical coupling and toughening mechanisms using the depth, width, and trap number of potential wells, which determine the barrier energy of the host brittle network, the mesh size of guest ductile network, and the mechanochemical host-guest interactions of these two networks, respectively. Finally, the effectiveness of the proposed model is verified using finite-element analysis (FEA) and experimental results of various DN hydrogels reported in the literature. Using the potential well model, which has host-guest chemistry from both brittle and ductile networks, this study clarifies the linking of mechanochemical coupling and toughening mechanisms in DN hyrdogels.

Funder

International Exchange Grant through Royal Society UK and the NSFC

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference39 articles.

1. Soft matter;de Gennes;Rev. Mod. Phys.,1992

2. Designing toughness and strength for soft materials;Zhao;Proc. Natl Acad. Sci. USA,2017

3. Polyelectrolyte complex coacervates: recent developments and new frontiers;Rumyantsev;Annu. Rev. Condens. Matter Phys.,2021

4. The fracture of highly deformable soft materials: a tale of two length scales;Long;Annu. Rev. Condens. Matter Phys.,2021

5. Highly stretchable and tough hydrogels;Sun;Nature,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3