Abstract
Abstract
Histological grade is one of the most powerful prognostic factors for breast cancer and impacts treatment decisions. However, a label-free and automated classification system for histological grading of breast tumors has not yet been developed. In this study, we employed label-free multiphoton microscopy (MPM) to acquire subcellular-resolution images of unstained breast cancer tissues. Subsequently, a deep-learning algorithm based on the generative adversarial network (GAN) was introduced to learn a representation using only MPM images without the histological grade information. Furthermore, to obtain abundant image information and determine the detailed differences between MPM images of different grades, a multiple-feature discriminator network based on the GAN was leveraged to learn the multi-scale spatial features of MPM images through unlabeled data. The experimental results showed that the classification accuracies for tumors of grades 1, 2, and 3 were 92.4%, 88.6%, and 89.0%, respectively. Our results suggest that the fusion of multiphoton microscopy and the GAN-based deep learning algorithm can be used as a fast and powerful clinical tool for the computer-aided intelligent pathological diagnosis of breast cancer.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Fujian Province
Program from Education Bureau of Fujian Province
Joint Funds of Fujian Provincial Health and Education Research
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献