Automated classification of breast cancer histologic grade using multiphoton microscopy and generative adversarial networks

Author:

Xi Gangqin,Wang QingORCID,Zhan Huiling,Kang Deyong,Liu Yulan,Luo Tianyi,Xu Mingyu,Kong Qinglin,Zheng Liqin,Chen GuannanORCID,Chen JianxinORCID,Zhuo ShuangmuORCID

Abstract

Abstract Histological grade is one of the most powerful prognostic factors for breast cancer and impacts treatment decisions. However, a label-free and automated classification system for histological grading of breast tumors has not yet been developed. In this study, we employed label-free multiphoton microscopy (MPM) to acquire subcellular-resolution images of unstained breast cancer tissues. Subsequently, a deep-learning algorithm based on the generative adversarial network (GAN) was introduced to learn a representation using only MPM images without the histological grade information. Furthermore, to obtain abundant image information and determine the detailed differences between MPM images of different grades, a multiple-feature discriminator network based on the GAN was leveraged to learn the multi-scale spatial features of MPM images through unlabeled data. The experimental results showed that the classification accuracies for tumors of grades 1, 2, and 3 were 92.4%, 88.6%, and 89.0%, respectively. Our results suggest that the fusion of multiphoton microscopy and the GAN-based deep learning algorithm can be used as a fast and powerful clinical tool for the computer-aided intelligent pathological diagnosis of breast cancer.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Fujian Province

Program from Education Bureau of Fujian Province

Joint Funds of Fujian Provincial Health and Education Research

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3