Atomically thin Schottky junction with a gap-mode plasmon for enhanced photoresponsivity in MoS2-based photodetectors

Author:

Jin Hyeok Jun,Lee Khang June,Park Cheol Min,Shin Gwang Hyuk,Hong Woonggi,Oh Dongsik,Choi Sung-YoolORCID

Abstract

Abstract Two-dimensional (2D) materials present various extraordinary properties that are advantageous in optoelectronic devices with atomically thin nature. Despite their excellent light–matter interaction, a low optical absorption that is proportional to thickness is considered to be a major limitation. In this study, a gap-mode plasmon structure is applied to the Schottky junction of Au–MoS2 to compensate for its low absorption. The magnitude of the gap-mode plasmon is generally known to be inversely proportional to the gap distance between two metal nanostructures; hence, an atomically thin 2D material can be considered to be a good candidate for a gap spacer. Owing to the gap-mode plasmon structure, the photoresponsivity of the proposed device is enhanced by approximately 11.6 times from 25 to 290 A W−1 under 1 nW of laser power, without photoresponse time degradation. Two operation modes, named the photovoltaic and the photoconductive mode, are also observed through different response times; these present different carrier transport mechanisms depending on the existence of bias voltage.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3