Ultra-thin freestanding terahertz frequency selective surface on flexible cyclic olefin copolymer

Author:

Sharma PrinceORCID,Ako Rajour Tanyi,Wang Qigejian,Atakaramians Shaghik,Walia SumeetORCID,Sriram Sharath

Abstract

Abstract Frequency selective surfaces (FSSs) are widely employed in spectrometers, selective absorbers, energy harvesting, and sensing devices. However, in the terahertz range, the performance of this ideal component is frequently constrained by the choice of material, which introduces a certain degree of attenuation, thereby diminishing the signal-to-noise ratio. Moreover, these FSS are often bulky and demonstrate a low extinction ratio, which limits their usage in wearables and miniaturised devices. In this work, a multi-band FSS composed of periodic microstructures on an ultrathin cyclic olefin copolymer sheet is proposed, analysed, fabricated, and evaluated using terahertz-time domain spectroscopy. The unit cell is composed of triple, evenly spaced, horizontal gold strips, linked around the middle by a fourth vertically oriented gold strip. By displacing the vertical strip, the asymmetric metasurface shows dual narrowband transmission at 1.04 THz and 1.67 THz. However, only a single narrowband transmission at 1.07 THz can be observed on a symmetric metasurface, with no displacement. The calculated Q factors are 4.52 and 16.63 at 1.04 THz and 1.67 THz, respectively, for the asymmetric metasurface. While for the symmetric metasurface, the calculated Q factor at 1.07 THz is 3.63. The proposed flexible metasurface can be tailored easily as single or dual narrowband frequency selective metasurface for channel filtering and broadband sources in emerging terahertz wireless systems.

Publisher

IOP Publishing

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3