Electromechanical behaviour of REBCO coated conductor toroidal field coils for ultra-high-field magnetic-confinement plasma devices

Author:

Li XiaodongORCID,Große Veit,Song DongbinORCID,Yang WenjiangORCID,Macián-Juan Rafael

Abstract

Abstract The development of rare-earth barium copper oxide (REBCO) coated conductors with an extremely high critical current density under ultra-high fields opens up a high-field path towards large-scale fusion. The latest technology has inspired cable-in-conduit conductors such as conductor on round core wires, twisted stacked tape conductor cables and Rutherford cables with outstanding current-carrying capacities. In order to realise an inductance balance and decrease magnetic diffusion, these cables have been twisted or folded to a certain extent, thus breaking the mechanical behaviour of the ceramic superconductor and limiting their potential for ultra-high-field applications. One possible solution is to employ a non-twisted cable, which offers maximum protection of its mechanical properties and enables a parallel orientation of the toroidal field vector to the surface of REBCO coated conductors, and at the same time decreases the influence of perpendicular fields on the critical current of REBCO cables. However, the applied physics community’s attitude towards using non-twisted, parallel REBCO stacked-tape cables is one of scepticism, the main argument being that the nonlinear EJ behaviour associated with screening current in the parallel stack might lead to a field distortion and reduce the performance of superconductivity. Recent analyses have demonstrated that the effect of screening current decreases significantly owing to a wavelike magnetic field distribution along the cable. The authors obtained similar results using H-formulation and TA formulation based finite element methods and demonstrated that the non-twisted cable may be feasible for DC current transmission toroidal field coils in magnetic-confinement devices. Furthermore, the electromechanical behaviour of toroidal field coils has been evaluated via the Maxwell stress, solved by using an AV formulation. It was discovered that the stress generated by the toroidal field coils is within the stress tolerance of the REBCO coated conductor, something which is of great significance in promoting the application of REBCO coated conductors for ultra-high-field magnetic-confinement plasma devices.

Funder

China Scholarship Council

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3