Core@shell nanoparticles by inflight controlled coating

Author:

Ahadi Amir MohammadORCID,Libenská Hana,Košutová Tereza,Cieslar Miroslav,Červenková Veronika,Prokop Dejan,Dopita Milan,Biederman Hynek,Hanuš JanORCID

Abstract

Abstract Controlled synthesis of core@shell nanoparticles (NPs) for certain applications is a difficult challenge in many nanotechnology projects. In this report, a conventional arrangement composed of a gas aggregation source (GAS) is employed to generate the core NPs, which are subsequently coated by the shell materials in a secondary planar magnetron sputtering. The important difference to the usual system is the application of the two opposing planar magnetrons in a closed field configuration. The prepared core Ag NPs by a GAS are coated/treated by the two magnetrons with Ti targets. Our findings clearly show that the shell thickness can be controlled by tuning the power delivered to the secondary magnetron plasma. Characterizations of the prepared films, by x-ray diffraction technique, disclose multi-crystalline cores covered by amorphous shells. Based on x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy measurements, different chemistry on the NPs surfaces and volume of the NPs can be achieved by tuning the operation conditions. Furthermore, the thermal annealing process leads to the growth of the crystallite size which results in emerging some microparticles caused by accelerating Ag surface mobility. The employed technique promises a reliable route to synthesize different heterogeneous NPs with stoichiometry tunable in a wide range for multi-functional devices.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3