Abstract
Abstract
We consider the transverse electric (TE) plasmonic modes supported by black phosphorene (BP) in a parallel waveguide structure with left-handed material (LHM) instead of the conventional right-handed dielectric material. The existence condition of the TE BP surface plasmon polariton (SPP) is
I
m
σ
>
0
. When an electric field is polarized along one of the two orthogonal crystal axes, the anisotropic symmetric and anti-symmetric plasmonic modes depend on the incident optical energy, the chemical potential, and the distance between two BP sheets can be observed. The symmetric mode has a more extensive effective refractive index, which possesses stronger field confinement. With a decreasing distance d between two BP sheets, the coupling strength between the two separate BPSPP waves increases. When d is small enough, the anti-symmetric mode root does not exist. LHMs can be used to realize a TE BPSPP mode to enhance the localization of the BPSPP, which is a practical method in optoelectronic devices based on black phosphorene.
Funder
National Natural Science Foundation of China
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献