Effects of spatiotemporal plasma power distribution on the modeling of ignition kernel evolution in quiescent and turbulent methane/air mixtures

Author:

Johnson Praise Noah,Taneja Taaresh Sanjeev,Yang SuoORCID

Abstract

Abstract The present work improves a phenomenological plasma-assisted combustion model by integrating the spatiotemporal distribution of plasma power density, thereby considering the evolution of plasma streamers in the modeling, and subsequently, better predicting the ignition kernel evolution. The improved phenomenological model is validated against experiments representing the plasma discharge and post-discharge ignition kernel evolution. Specifically, the new model demonstrates a more accurate prediction of ultrafast gas heating and O2 dissociation during the plasma discharge, compared to the original model. In addition, the new model is found to closely match the experimental pressure wave and heated channel profiles post-discharge without the need for tuning the energy deposition (unlike the original model), highlighting its accuracy of post-discharge ignition kernel dynamics. The improved phenomenological model is then employed to investigate ignition kernel evolution for a stoichiometric methane-air discharge across various discharge gap configurations. Simulations reveal a non-uniform temperature and streamer distribution progressing from the electrode tips toward the center, contrasting uniform cylindrical discharges previously described in the original model. Streamer propagation is observed to be faster for larger gaps when maintained at the same average electric field for different discharge gaps. The tendency of smaller gaps to produce detached toroidal ignition kernels is observed, while larger gaps promote cylindrical and attached ignition kernels. Interactions between successive ignition kernels from consecutive discharges varied significantly, with the smallest gap (1 mm) promoting the quenching of the preceding ignition kernel due to the initial kernel–kernel separation. The intermediate gap (2 mm) promotes detached kernel growth. In contrast, in the largest gap (4 mm), kernels consistently combine and expand attached to electrodes. The impact of homogeneous isotropic turbulence is also explored, showing the persistence of ignition kernels early on but eventually quenching due to enhanced radical and heat losses with pronounced turbulence intensity.

Funder

Advanced Research Projects Agency - Energy

Graduate School, University of Minnesota

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3