Electronic properties of polyethylene naphthalate as derived from photo-stimulated discharge, luminescence experiments and quantum chemical calculation

Author:

Mendoza Lopez Duvan,Teyssedre GilbertORCID,Boudou Laurent,Berquez Laurent,Laurent Christian,Iwata Shinya,Takada Tatsuo

Abstract

Abstract The electronic properties of thin films of poly(ethylene 2,6-naphthalate)—PEN, are investigated based on their photo-physical (optical absorption, photoluminescence) and electrical (space charge distribution, photo-stimulated discharge) behavior. Photo-stimulated currents are associated with optical absorption of the material leading to space charge dissipation as demonstrated by space charge distribution measurement. Based on this set of experimental results and quantum chemical calculation performed on PEN macromolecular system, we propose a new scheme for the electronic levels of PEN. This scheme allows understanding the mechanisms at play in photo-stimulated discharge. One of the main conclusions of our work is that photo-stimulated current measurements do not probe the energy level of traps. Detrapping of charges results from a two-step process where the photon energy is absorbed by chromophores that restitute a part of this energy to trapped charges through various mechanisms. Moreover, the new scheme allows discussing the components of the luminescence excited under different stresses, being electric field, electronic and UV irradiation, charge recombination and thermal activation.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3