Binary acoustic trapping in a glass capillary

Author:

Fornell AnnaORCID,Baasch Thierry,Johannesson Carl,Nilsson JohanORCID,Tenje MariaORCID

Abstract

Abstract Acoustic trapping is a useful method for handling biological samples in microfluidic systems. The aim of this work is twofold: first to investigate the physics behind acoustic trapping in a glass capillary and secondly to perform binary acoustic trapping. The latter is achieved by increasing the density of the fluid in the trapping channel. The trapping device consisted of a glass capillary with a rectangular inner cross-section (height 200 µm × width 2000 µm) equipped with a small piezoelectric transducer. The piezoelectric transducer was actuated at 4 MHz to generate a localised half-wavelength acoustic standing-wave-field in the capillary, comprising of a pressure field and a velocity field. Under acoustic actuation, only particles with higher density than the fluid, i.e. having a positive dipole scattering coefficient, were trapped in the flow direction. The numerical and analytical modelling of the system show that the trapping force which retains the particles against the flow depends only on the dipole scattering coefficient in the pressure nodal plane of the acoustic field. The analytical model also reveals that the retention force is proportional to the dipole scattering coefficient, which agrees with our experimental findings. Next, we showed that in a mixture of melamine particles and polystyrene particles in a high-density fluid it is possible to selectively trap melamine particles, since melamine particles have higher density than polystyrene particles.

Funder

Knut och Alice Wallenbergs Stiftelse

European Union’s Horizon 2020 research and innovation programme

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3